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Abstract The Arctic marine ecosystem is shaped by the

seasonality of the solar cycle, spanning from 24-h light at

the sea surface in summer to 24-h darkness in winter. The

amount of light available for under-ice ecosystems is the

result of different physical and biological processes that

affect its path through atmosphere, snow, sea ice and water.

In this article, we review the present state of knowledge of

the abiotic (clouds, sea ice, snow, suspended matter) and

biotic (sea ice algae and phytoplankton) controls on the

underwater light field. We focus on how the available light

affects the seasonal cycle of primary production (sympagic

and pelagic) and discuss the sensitivity of ecosystems to

changes in the light field based on model simulations.

Lastly, we discuss predicted future changes in under-ice

light as a consequence of climate change and their potential

ecological implications, with the aim of providing a guide

for future research.

Keywords Arctic ecosystem � Arctic Ocean �
Light transmission � Phytoplankton � Primary production �
Sea ice algae

INTRODUCTION

The reduction of Arctic sea ice is one of the strongest

manifestations of global climate change. Besides shrinking

in extent, sea ice properties are also changing, as the Arctic

Ocean shifts towards a thinner (e.g. Renner et al. 2014) and

younger (Maslanik et al. 2011) ice pack. This shift has

profound implications for the structure of the remaining sea

ice, for melt pond development, and for the amount of

snow that accumulates. The open water season has become

longer because sea ice is forming later and melting earlier

(e.g. Stroeve and Notz 2018). These changes in sea ice

strongly modulate the underwater light field (i.e. its

intensity and spectral composition) leading to an increase

in light penetrating through the ice cover into the water

(Nicolaus et al. 2012).

Light and nutrients are key drivers of Arctic ecosystem

dynamics. Primary producers within the sea ice (sea ice

algae) and in the underlying ocean (phytoplankton) require

light for growth (e.g. Michel et al. 1988). Therefore,

changes in light availability can have a significant impact

on Arctic primary production. Ice algae and phytoplankton

form the basis of the Arctic marine food web, thus changes

in primary production will have cascading effects on higher

trophic level species such as fish, birds, and mammals (e.g.

Steiner et al. 2019). However, food web responses may not

be linear since the timing, as well as the magnitude of

production are important. Mismatches in the timing of the

blooms of sea ice algae and phytoplankton—principally

regulated by light—and the timing of the zooplankton

bloom (termed secondary production)—principally regu-

lated by temperature (Richardson 2008)—may decouple

primary and secondary production, with consequences for

fish and higher trophic levels (Søreide et al. 2010). Fur-

thermore, many higher trophic level predator–prey inter-

actions are themselves regulated by light (e.g. Hobbs et al.

2021), as the ability of visual predators (e.g. fish, birds) to

detect prey is a function of available light (as well as visual

acuity and prey size).

Monitoring under-ice light levels and ecosystem

responses is crucial for better understanding the effects of

ongoing changes on sympagic (ice associated) and pelagic

(water column) Arctic ecosystems. Obtaining observations

in extreme conditions, which are characteristic of the polar

environment, remains a challenge. We are, therefore, lar-

gely reliant upon numerical models and satellite products

to quantify large-scale changes in the light field and to
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predict associated ecological implications. Recent mod-

elling studies have shown a marked increase in light con-

ditions favourable for under-ice blooms over the last two

decades (Horvat et al. 2017) and pointed to the controlling

role that shortwave radiation has on the magnitude of

phytoplankton bloom (Popova et al. 2010). Moreover,

CMIP5 simulations (Tedesco et al. 2019) indicate sympa-

gic primary production, which is triggered by light avail-

ability, will begin earlier and increase at most latitudes

under modelled climate change scenarios. Thus, the

parameterization of the under-ice light field in numerical

models is crucial to properly represent future trends in

high-latitude ocean primary production. In this study, we

review the physical and biological processes that alter and

attenuate light in its journey through the atmosphere, the

snow and ice cover, and the upper ocean (‘‘Incoming light’’

to ‘‘Light propagation through seawater—the role and

sources of CDOM and SPM’’ sections, Fig. 1). Focus is on

the parameterizations of light transmission through sea ice

and snow which are often used in large-scale sea ice-ocean

models (e.g. CMIP6, Eyring et al. 2016) and recently

applied to satellite data (Stroeve et al. 2021). We elucidate

the role of primary producers on light absorption, as well as

their dependency on light (‘‘Sea ice algae and phyto-

plankton’’ section). By means of numerical simulations

(‘‘Sensitivity of sea ice algae and phytoplankton to light

transmission parameterization’’ section), we show how the

choice of light transmission parameterizations and their

parameters affect the simulated under-ice light field and, as

consequence, the sympagic and pelagic ecosystems.

Finally, we consider possible societal implications of future

changes in the Arctic (‘‘Expected future changes and socio-

economic impact’’ section).

INCOMING LIGHT

Light availability at the ocean surface in the Arctic is

primarily governed by seasonal changes in solar zenith

angle and cloud cover (Fig. 1). In the range relevant for

polar applications, incoming light decreases almost linearly

with solar zenith angle above 50 degrees as illustrated in

Fig. 2, upper panel. Clouds can be a dominant feature in the

Arctic. Their impact remains limited for cloud cover up to

* 30%, but it rapidly reduces surface irradiance for higher

levels of cloud cover (Fig. 2, lower panel). 100% cloud

cover reduces surface irradiance to * 20% of cloud free

levels.

In coupled physical ecosystem models (e.g. SINMOD,

Wassmann et al. 2006; BESTMAS ? CLADACH, Banas

et al. 2016) incoming light is often provided as shortwave

radiation (300–3000 nm) by satellite available products and

reanalysis data that usually include atmospheric conditions

such as cloudiness. The part of the spectrum relevant for

biological processes is termed PAR (Photosynthetically

Active Radiation: 400 nm–700 nm) which is generally

taken in the range 43–50% of the provided shortwave

Fig. 1 Schematic of light transmission through atmosphere, sea ice and snow, and ocean (credit: Andrew Orkney)
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radiation (e.g. Banas et al. 2016; Castellani et al. 2017;

Schourup-Kristensen et al. 2018).

LIGHT ATTENUATION BY SEA ICE

Despite the notably high albedo (i.e. fraction of solar

radiation reflected by the surface) of a sea ice cover, a

fraction of the light is propagated through the ice, into the

ocean. Sea ice attenuates light about ten times more

strongly than clear ocean waters and in turn, snow atten-

uates ten times more strongly than the ice (Perovich 1996).

Consequently, the under-ice light field averaged over large

scale is only up to 20% of the incoming light (Katlein et al.

2019). Besides the thickness of the snow and ice cover,

light transmission is strongly influenced by the internal

structure of the ice and snow, and by the different surface

elements that characterise the ice cover in different seasons

(e.g. pressure ridges, melt ponds). While the large ice

thickness in ridges reduces light levels underneath, their

complex internal structure can lead to favourable light

conditions within (Katlein et al. 2021). Melt ponds on top

of the ice can dramatically increase the transmittance of sea

ice since they have a much lower albedo than the sur-

rounding ice (Nicolaus et al. 2012; Light et al. 2015). Melt

ponds can also introduce strong horizontal inhomogeneity

to the light field in the water column (Frey et al. 2011).

Further constituents deposited on top of the ice surface or

within the ice matrix like sediment, Colored Dissolved

Organic Matter (CDOM), soot, or algae can locally or

temporally influence the intensity and spectral shape of the

transmitted light.

Modelling light transmission through sea ice

In numerical ice-ocean models, such as those contributing

to CMIP6 (Eyring et al. 2016), light attenuation in sea ice is

represented at different levels of complexity. In the pres-

ence of sea ice, the amount of underwater light in each grid

cell is the weighted average of light reaching the ice-free

ocean surface and light transmitted through the ice cover.

The simplest approach assumes zero transmittance for ice

(bare, ponded, or snow-covered) and 0.93 (the difference

between 1—maximum albedo—and an albedo of 0.07, the

Fig. 2 Effect of varying solar zenith angle (upper panel), and cloud cover (lower panel) on surface PAR irradiance. Data are presented as the

ratio of light intensity relative to the equator at noon on midsummer’s day. The red box highlights solar zenith angles relevant for Arctic regions.

All simulations done with Hydrolight Radiative Transfer Software that includes the RADTRAN sky model (Gregg and Carder 1990) and the

cloud model from Kasten and Czeplak (1980)
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value which is typically used for open water) transmittance

for areas of open water (Perovich et al. 2007). More

complex models use a variety of approximations and

numerical techniques for computing light transmission in

the ice-ocean domain. One such approach widely used in

CMIP6 models, relies on a simple exponential description

(Grenfell and Maykut 1977) with empirically derived

extinction coefficients that represent the attenuation of light

through snow and ice. The values of extinction coefficients

vary according to season and surface characteristics. The

value for bare ice is usually taken in the range 1.1 to

1.6 m-1 (Perovich 1996; Grenfell and Maykut 1977),

whereas the values for snow show a larger variability with

values ranging from 4.3 to 40 m-1 (Perovich 1996). In the

case of bare summer ice, the absorption of solar radiation

causes the above-freeboard ice to weather, become

crumbly, and have a significantly larger air-ice interface,

thus scattering light much more effectively than the ice

beneath. The uppermost portion of this layer is termed the

‘‘surface scattering layer’’ (SSL), which is typically up to

10 cm thick (e.g. Light et al. 2008). To estimate light

transmittance through the sea ice cover, the simple expo-

nential models rely on an approximation that extinguishes a

significant portion (up to 70%) of the incident light in the

SSL. Thin ice with small freeboard, and in turn a rather thin

SSL, forms a relevant fraction of the ice cover, especially

in the marginal ice zone and in the seasons of ice forma-

tion/melt. Thus, the treatment of the SSL and of the light

transmission through thin ice in models will impact the

under-ice PAR, and consequently, the ecosystems (‘‘Sen-

sitivity of sea ice algae and phytoplankton to light trans-

mission parameterization’’ section).

More sophisticated approaches include explicit treat-

ment of multiple scattering and use inherent optical prop-

erties to compute the full radiation budget for all surface

types present (Briegleb and Light 2007). Indeed, snow-

covered ice, ponded ice, melting ice, and even bare ice all

exhibit large vertical gradients in scattering. Such treat-

ments are incorporated into only a few sea ice models (e.g.

CICE, Holland et al. 2012).

LIGHT PROPAGATION THROUGH SEAWATER—

THE ROLE AND SOURCES OF CDOM AND SPM

Once light reaches the ocean surface, it is further attenu-

ated through absorption and scattering by sea water itself

and by particles such as CDOM, Suspended Particulate

Matter (SPM), and phytoplankton (‘‘Sea ice algae and

phytoplankton’’ section). Within the visible spectrum,

absorption by pure water is two orders of magnitude

stronger in the red than in the blue (e.g. Pope and Fry

1997), whereas scattering is an order of magnitude greater

in the blue than in the red. The scattering coefficient also

depends on the salinity of the water, with values increasing

by around 30% from freshwater to sea water (Morel 1966).

CDOM primarily affects light propagation through

absorption (Dall’Olmo et al. 2009), with CDOM absorption

decreasing approximately exponentially from the blue to

the red (e.g. Carder et al. 1989). Similarly, SPM absorbs

highly in the blue and decays almost exponentially towards

the red (Babin et al. 2003). Scattering by SPM exhibits

similar behaviour in both organic and mineral form, with

limited spectral variability in scattering coefficients (Lo

Prejato et al. 2020).

CDOM in the Arctic is mainly provided by discharge

from rivers. In open water, sources of SPM are mainly

organic detritus, formed during phytoplankton blooms

(Macquaker et al. 2010). In coastal regions, the sources of

SPM are mainly mineral in origin, usually originating from

coastal erosion, or run-off from rivers and land (Klein et al.

2019).

On a global scale, CDOM and SPM absorption in the

blue is broadly equivalent to that of phytoplankton (Siegel

et al. 2002). However, light attenuation by these con-

stituents in marine ecosystem models is generally repre-

sented by very simplistic parameterizations. Commonly,

attenuation in water in Arctic ecosystem models is a

function of phytoplankton biomass with a constant back-

ground PAR attenuation, while the effect of CDOM/SPM

in some instances is added as an average over a broad,

heterogeneous ocean region (e.g. Banas et al. 2016). Other

models represent attenuation by SPM and other dissolved

organics as a function of salinity (e.g. Mei et al. 2010).

However, in coastal regions, such as the Russian shelves

highly affected by river discharge, the lack of an explicit

treatment of CDOM might lead to biases in model simu-

lations (e.g. Schourup-Kristensen et al. 2018).

SEA ICE ALGAE AND PHYTOPLANKTON

Light transmitted within or under sea ice may be absorbed

or scattered by phytoplankton and ice algae (Kirk 1994).

The absorption of visible radiation by algal cells is spec-

trally dependent and relies on the presence of a range of

chlorophyll and carotenoid molecules and biliproteins,

each with their own characteristic absorption spectrum.

There are also strong differences in the efficiency of light

absorption by pelagic and sympagic algae based on their

intracellular packaging of pigment molecules and the size

and morphology of the cells (e.g. Chase et al. 2013). It is

the harvesting of sunlight by algal pigments that ultimately

powers the metabolism of primary producers. In contrast to

absorption, resulting mainly from chemicals stored in the

cell interior, the amount, wavelength dependence, and
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direction of scattering by phytoplankton cells depends on

their size and exterior morphology.

Whilst there exists variation in the bio-optical properties

of algal cells, the most important component of the light

absorption spectra is the photosynthetic pigment chloro-

phyll a (chl a). Thus, the light absorptive properties of ice

algae and phytoplankton, and the effect they have on the

transmission of light through the water column, can largely

be described as a function of chl a concentration. However,

this may not be true for coastal waters, where CDOM

derived from the land may enter the sea (‘‘Light propaga-

tion through seawater—the role and sources of CDOM and

SPM’’ section).

Photophysiology of Arctic algal assemblages—

theoretical and modelling approach

The ways in which different algal assemblages interact

with incident light fields vary. Hence, spatiotemporal

variability in both the intensity and the spectral quality of

light may favour some communities over others. Many

Arctic algal communities also adopt different photophysi-

ological strategies to cope with the highly variable light

field in the Arctic. Despite the relief of darkness in spring,

ice algae and many phytoplankton communities find

themselves shaded beneath ice and snow. Shade-adapted

algae include the diatoms Nitzschia frigida, the main spe-

cies dominating sea ice algae communities, and Melosira

arctica (Fig. 3). Such sympagic diatoms form mat-like

colonies or filaments affixed to the sea ice subsurface.

Despite very low light intensity, high pigmentation and

occupying a stable band a few centimetres thick at the ice-

water interface permit growth as early as February

(Syvertsen 1991). During the summer months, many Arctic

ice algae and phytoplankton assemblages have unique

adaptations that let them survive relatively high light in

summer without sacrificing their ability to grow in lower

light in spring. An example are the photophysiological

adaptation strategies of diatom species: their intense pig-

mentation and concentrated communities result in self-

shading, moderating their light environment (Barros et al.

2003). The ability of diatoms to adapt to a range of light

environments, ranging from light-limited conditions

beneath seasonal ice to intensely illuminated melt layers

explains their widespread occurrence in both under-ice and

ice-edge blooms (Degerlund and Eilertsen 2010).

Once a photon is absorbed by an algal cell, how effi-

ciently the photosynthetic machinery of the cell can con-

vert this into chemical energy (photophysiology) depends

on several factors. Variation in algal photophysiology has

been explicitly considered in Arctic ecosystem models for

at least three decades (Slagstad and StØle-Hansen 1991).

Many recent high-latitude models have represented the

phytoplankton by two competing size classes (usually

taken to represent diatoms and small flagellates), either

with (Wassmann et al. 2006) or without (Vernet et al.

2017) including differences in photophysiology between

the two groups. Banas et al. (2016) found that including

seasonal photoacclimation in a one-phytoplankton model

was sufficient, and also necessary, to capture the timing

and magnitude of a high-latitude spring bloom in detail.

The above cited model studies illustrate that the inclusion

of flexible photophysiology within populations as well as

photoresponse-based competition between functional types

is required in high-latitude plankton models to properly

represent timing and magnitude of the bloom.

SENSITIVITY OF SEA ICE ALGAE

AND PHYTOPLANKTON TO LIGHT

TRANSMISSION PARAMETERIZATION

Modelled PAR and growth of sea ice algae and phyto-

plankton are sensitive to light transmission parameteriza-

tions. In the case of the exponential model, largely used in

CMIP6 models, the same holds for the chosen extinction

Fig. 3 Example of sea ice algae forming a mat-like colony under the ice (left panel, credit: Carsten Wancke), and of Melosira arctica forming

filaments affixed to the sea ice subsurface (right panel, credit: Oliver Müller)
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coefficients which determine the exponential decay in sea

ice and snow, both of which are derived from observations,

but are subject to large uncertainty (Katlein et al. 2019;

Castellani et al. 2020). To illustrate the consequence of

different treatments of light transmission through thin ice

and through the SSL, and of the extinction coefficients, we

present results of numerical experiments performed with

the Finite Element Sea ice Ocean Model (FESOM) version

1.4 coupled to the ocean biogeochemical model REcoM2

(Schourup-Kristensen et al. 2018) and to the Sea Ice Model

for Bottom Algae SIMBA (Castellani et al. 2017).

Experiment ‘standard’ assumes the standard thickness of

the SSL of 10 cm (Light et al. 2008) for sea ice. Experi-

ment ‘drainage’ investigates the impact of making the

existence and thickness of the SSL dependent on the

freeboard, assuming a linear increase of the SSL from 0

(for ice thickness below 50 cm) up to 10 cm (for sea ice

thickness of 80 cm). The third experiment ‘drainage_2ks’

investigates the effect of a doubled extinction coefficient

for dry snow ks from 10 to 20 m-1. To highlight the sen-

sitivity of the biological system to changes in light trans-

mission parameterization, we focus on the seasonal

evolution of in-ice chl a (as proxy for sea ice algae), and

diatom net primary production (NPP) in the ocean

(phytoplankton).

The introduction of a thickness-dependent SSL (‘drai-

nage’) leads to a large increase of PAR in the summer

months (Figs. 4 and 5). Particularly in the marginal areas,

where ice is often thinner than 80 cm, under-ice PAR

increases up to twice that in the ‘standard’ simulation

(Fig. 4). Differences in PAR start to appear in May–June

(Fig. 5) and lead to a small increase in diatom NPP, limited

to lower latitudes (70–85�N), but with no effect on the

onset of the bloom. Differences remain negligible for sea

ice algae. In contrast, a doubling of the extinction coeffi-

cient for snow (‘drainage_2xKs’) already affects PAR in

spring and early summer (Fig. 5), leading to a reduction of

under-ice PAR in those months when snow did not yet melt

completely. Using a larger ks causes a delay of the sea ice

algal bloom onset by up to 2 weeks in higher latitudes and

a shift of the peak by more than a month (Fig. 5). The

effects on the phytoplankton remain, however, negligible,

since phytoplankton start to grow later in the season

compared to sea ice algae, when the differences in PAR

become negligible.

Our results show that the choice of parameterizations of

light transmission and their coefficients affect underwater

light, but differently according to season. The response of

the ecosystems also differs, with sea ice algae being more

sensitive than phytoplankton. Moreover, sea ice algae and

phytoplankton have different photophysiology (‘‘Sea ice

algae and phytoplankton’’ section), which results in dif-

ferent timing of the bloom and thus different response to

changes in the light field. These results show that how

reliably we can project future changes in the magnitude and

particularly in the timing of sea ice and ocean primary

production is affected also by how we describe light

transmission in models. With the aim to reliably project

Fig. 4 Under-ice PAR at the end of August 2012 for the case with a standard parameterization of the SSL (‘standard’ simulation, left hand side)

and for ‘drainage’, when the SSL only exists if the sea ice is thicker than 50 cm (right hand side)
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future changes in sympagic and pelagic productivity, there

is the need to theoretically constrain parameterizations

(such as the representation of the SSL) and their parame-

ters. Moreover, an intercomparison between model results

adopting different parameterizations and parameters is

needed in order to quantify the differences between for-

mulations and their impact on ecosystems response.

EXPECTED FUTURE CHANGES AND SOCIO-

ECONOMIC IMPACT

The current global warming trend is likely to result in

future increase of light reaching the upper ocean (Lannuzel

et al. 2020) with consequences for the temporal and spatial

patterns of sea ice algae and phytoplankton growth. Phy-

toplankton growth is expected to shift northwards and

occur earlier following a reduction in sea ice extent and

thickness (Ardyna and Arrigo 2020). Climate models

suggest that Arctic precipitation will transition from being

snow to rain dominated leading to a reduced snow cover

(Bintanja and Olivier 2017) and the increased likelihood

that the sea ice algal bloom will happen earlier in the

season (Post et al. 2013; Tedesco et al. 2019; Lannuzel

et al. 2020). These shifts have the potential to significantly

alter the composition and abundance of primary producers

by favouring different photoadaptation strategies. Further-

more, such potential shifts in timing are likely to cause a

mismatch between primary production and associated

zooplankton grazing, thus compromising the life cycle of

zooplankton (Søreide et al. 2010).

Changes in the light field may also modify the vertical

positioning of zooplankton as they negotiate the trade-offs

between predation risk and feeding (Hobbs et al. 2021).

Such migratory behaviour of zooplankton can actively

draw carbon out of the surface waters making it an

important contribution to the vertical carbon flux (Hansen

and Visser 2016). Thus, a consequence of a change in light-

mediated vertical migration is disruption of the biological

pump.

The most substantial impacts on fish and seabirds are

likely to be through visual predation. Increasing illumina-

tion will improve feeding conditions for epipelagic (i.e.

that oceanic zone where enough light penetrates for pho-

tosynthesis) fish, and increased predation by fish may lead

to changes in the size distribution of the zooplankton

community (Varpe et al. 2015). Planktivorous fish them-

selves will be subject to increased predation risk, so

increasing illumination may lead to wholesale changes in

trophic transfer efficiency through food webs (Langbehn

and Varpe 2017). However, observations and models both

suggest that in some high-latitude regions the increases in

primary production associated with low-ice conditions are

actually inversely correlated with the success of fish, birds,

and mammals, for reasons of plankton composition and

timing (Banas et al. 2016). This gives the impression of a

fragile ecosystem, but there are internal balances that may

come into play to provide resilience in the form of variable

life history strategies (Hobbs et al. 2020) and changes in

species composition (Renaud et al. 2018) such that Arctic

marine food webs may be more resilient to climate-related

shifts than previously assumed.

Fig. 5 Mean PAR (top row), mean sea ice algae chl a (middle row) and NPP of diatoms (bottom row) in latitude bands. The columns show on

the left hand side: the standard parameterization of the SSL (‘standard’ simulation); in the middle: ‘drainage’—existence of an SSL only if the

sea ice thickness[ 50 cm; and on the right hand side: ‘drainage_2Ks’ with a doubled extinction coefficients for snow Ks. For the simulations

‘drainage’ and ‘drainage_2ks’, NPP and PAR are shown as differences ‘drainage’—‘standard’ and ‘drainage_ks’—‘drainage’, respectively
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Changes in both the physical environment (e.g. sea ice

loss in coastal regions, loss of permafrost) and the

ecosystem will affect ecosystem services, with strong

societal and economic effects (O’Garra 2017). This is

particularly relevant for communities based on fisheries,

subsistence hunting and coastal infrastructure, but also on

commercial activities making use of those ecosystem ser-

vices. Further warming and ice loss may lead to further

biogeographic shifts in fish distributions and perhaps to

behavioural changes such as reduced school sizes (Brierley

and Cox 2010). Following fish, larger Arctic species such

as seals and whales are moving northwards into the Arctic

basin. This will affect native populations, who rely on

whales as a food source, as well as for their cultural

heritage.

Increasing light intensity might lead via altered primary

production to altered fish production, including a predicted

increase in pelagic and planktivorous fish (Heath et al. this

volume). There is growing concern that the next big global

development in commercial fishing will target the meso-

pelagic, where the estimated c. 10 GT fish biomass (Iri-

goien et al. 2014) may be the planet’s last remaining

untapped source of protein. Fishing in the central Arctic

Ocean is, however, prohibited until at least 2034 by bind-

ing legal agreement between multiple Arctic nations (Hoag

2017).

The complexity and interconnectivity of the social-

ecological system in the Arctic, at a time where it experi-

ences rapid changes, is thus calling for holistic studies to

assess the impacts on the ecosystems and on human com-

munities, as well as ways to respond.
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